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MODERN MODELS AND METHODS OF RESOURCE MANAGEMENT OF
DISTRIBUTED COMPUTER SYSTEMS

Abstract. The allocation of resources in heterogeneous distributed computer systems is a
challenging task, constrained by factors such as task diversity and the decision process for optimal node
selection. Traditional scheduling methods face limitations in addressing these complexities. This research
proposes an Al-based optimization approach that leverages neural networks and deep learning
techniques to efficiently allocate tasks across diverse nodes.

The core component is a neural network responsible for assigning tasks to nodes based on attributes
like computational efficiency, security, fault tolerance, and data transfer latency. Node attributes
representing current state are continuously monitored and used to train the neural network, allowing it
to learn node capabilities. When a new task arrives, the trained network matches it to the most suitable
node by comparing task requirements to learned node attributes.

Extensive experiments compared the performance of feedforward neural networks (FFNN) and
convolutional neural networks (CNN) across five datasets of varying sizes (100-2000 rows representing
potential nodes). The FFNN demonstrated superior overall accuracy and consistency, achieving 90-
98.6% validation accuracy, while the CNN exhibited fluctuating performance.

The proposed Al-based scheduling approach provides an adaptive framework for optimally
assigning heterogeneous tasks in distributed environments. Key advantages include adaptability to
changing system conditions through continuous training, flexible task-node mapping based on learned
capabilities, scalability leveraging deep learning, and optimized resource utilization by fitting tasks to
suitable nodes.

However, the experiments revealed no clear superior neural network architecture across all dataset
scales. Further research aims to develop a hybrid or adaptive architecture that can dynamically adjust
structure and parameters based on input data characteristics, combining strengths of feedforward and
convolutional networks for efficient resource allocation tailored to specific datasets.

Keywords: distributed computer systems, resource allocation, neural networks, deep learning, task
scheduling, heterogeneous systems, adaptive optimization.
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CYYACHI MOJAEJII TA METOJIU YIIPABJIIHHA PECYPCAMU
PO3NOJAUVIEHUX KOMIT'IOTEPHUX CUCTEM

Anomauisn. Po3noodin pecypcis y cemepozeHHUX pO3NOOIIEHUX KOMN TOMEPHUX CUCMEMAX € CKAAOHUM
3A60AHHAM, 0OMEINCEHUM MAKUMU PAKMOPaAMU, K PISHOMAHIMHICMb 3A80aHb | npoyec NPUUHAMMS PilieHb
0151 8UOOPY ONMUMATLHO20 8Y31d. Tpaouyilini Memoou Niany8aHHs MAOMb 0OMENCEHHs ) SUPIUEHH] Yux
cknaonowie. Lle oocnioscenns nponoHye nioxio 0o onmumizayii Ha ocrosi LI, axuli 6UKOpUCmMo8ye HeupoHHI
Mepednci ma Memoou e1uboK020 HAGHAHHS O/l eEeKMUBHO20 PO3NOOLTY 3A80AHb MIJC PIZHUMU GV3IAMU.

OcnosHUM KOMNOHEHMOM € HEeUPOHHA Mepedica, AKa GI0N08ioae 3a NPUHAYEHHs 3060aHb 6Y31aM Ha
OCHO8I Maxux ampubymis, K 00UUCTIOBANbHA epexmuenicmb, be3neka, 8i0MOBOCMIUKICIb | 3amMpumKa
nepeoasants danux. Ampudoymu 6y3ia, wjo npeocmasnaioms NOMOYHUL CIAH, NOCMIUHO 8IOCMENCYIOMbC Ma
BUKOPUCTHOBYIOMbCS 0151 HAGUAHHS HEUPOHHOT Mepedici, wo 0036075¢€ itl sugyamu modxcausocmi gysna. Konu
HAO0Xo0ums Ho8e 3a80AHHS, HABYEHA Mepedcd 3ICMABAE 1020 3 HallOiibl NIOX00AWUM 8Y3/10M, NHOPIBHIOIOUU
8UMO2U 00 3A80AHHS 3 AMPUOYMAMU BUBYEHO20 BY31d.

Macwmabni excnepumenmu nopieHIo8aU NPOOYKMUGHICMb HEUPOHHUX Mepedic NPIMO20 38 [3KY
(FFNN) i 320pmkogux neuponuux mepesxc (CNN) y n’amu Habopax danux piznozo posmipy (100-2000 psaoxis,
wo npeocmagnaome nomenyiuni 6y3u). FFNN npodemMoHcmpyeag 6ucoky 3aeaiibHy mMOYHICMb |
nocaioosHicmo, Odocsenyswiu  90-98,6% mounocmi  nepesipku, mooi sk CNN nokazae Koaueanus
NPOOYKMUBHOCTI.

3anpononosarnuil nioxio 00 NAAHYBAHHA HA OCHOBI WMYYHO20 iHMeENeKmy 3abe3neyye a0anmueHy
CMpPYKMypy 0151 ONMUMATbHO20 NPUSHAYEHHS PI3HOPIOHUX 3a80akb V po3nodinenux cepedosuujax. OCHOGHI
nepegazu GKIIOYAMb A0ANMUSHICTE 00 MIHAUBUX YMOB CUCEMU 3A80SKU Oe3nepepeHoMY HABYAHNIO, SHYUKe
8i000padiceHHs 8Y371i8 3A80AHb HA OCHOBI BUBUEHUX MOJICAUBOCTIEN, MACUMAOOBAHICIY 13 3ACMOCYBAHHAM
2IUbBOK020 HABYAHHA MA ONMUMI308AHE BUKOPUCIAKHA PeCypCie WIAXOM NIO2OHKU 3A80AHb 00 BIONOBIOHUX
8)'37116.

Oonax excnepumermu He SUABUIU YIMKOI Kpawoi apximexmypu HetpoHHOT Mepedici 8 YCix Macumadax
Habopy oanux. Tlodanvui 00CHiONHCEHH CAPAMOBAHI HA PO3POOKY 2ibpudHOi abo adanmueroi apximekmypu,
KA MOJHCe OUHAMIYHO pecyniosamu CIMpYKmypy ma napamempyu Ha OCHO8I XapaKkmepucmuk 8xiOHUx OaHux,
NOEOHYIOUU nepesazu NPsMoi ma 320pmKo8oi mepeic 0718 eekmuerHo20 po3nooiny pecypcie, NPUCMOCO8aAHUX
00 KOHKDEemHUX Habopie OaHUX.

Knrouoei cnosa: po3nodineni Komn tomepri cucmemu, posnooil pecypcis, HeupoHHi mepedici, enuboke
HABYaHHS, NJIAHYB8AHHS 3A60AHb, 26MEPO2EHHI cCUCMeMU, A0anmMueHa onmuMi3ayis.

1. Introduction.

The allocation of resources in distributed computational networks using traditional scheduling
methods is significantly constrained by factors such as the heterogeneity of tasks to be distributed and
the decision-making process when selecting the most optimal node for a specific task[1-3].
Considering that the tasks are heterogeneous and have dynamic parameter requirements for efficient
execution, leveraging neural networks with techniques like reinforcement learning could be the
appropriate solution[4, 5]. This approach aims to create software that can be employed in various
computational systems, adapting to changing node parameters[1-3, 6].

This research aims to resolve the limitations posed by system heterogeneity in distributed
networks, seeking efficient solutions for optimal assignment of tasks to diverse nodes within the
system using neural networks and deep learning technology.

2. Resource allocation methods classification & comparison.

2.1. General overview of traditional resource allocation methods.

Below is a general overview of traditional Resource Allocation Methods classification. The
schema describes 4 of the traditional categories of methods (Fig. 1) [7]:

- Centralized,

- Decentralized;

- Market-based methods;

- Optimisation-based methods.
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Central Scheduling

Centralized

Centralized Load
Balancing

Distributed
Scheduling
Decentralized

Agent-based Load
Balancing

Resource Allocation Methods

Commaodity Market
Model

Market-based

Auction-based Model

Ant Colony
Optimization

Optimisation-based
methods ’

Particle Swarm
Optimisation

Al-powered
optimisation

Fig. 1. General overview of resource allocation methods
Table Nel demonstrates the comparison between all the listed methods, including their pros and

cons, as well as short form description.
Overview of resource allocation methods (schema):
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Resource allocation methods comparison:

Table 1

Method Description Advantages Disadvantages
Central Scheduling | Single centralized | Simplicity, control Single point of failure,
scheduler scalability
Centralized  Load | Single central | Implementation Limits scalability, fault
Balancing workload simplicity, control tolerance
distributor
Distributed Multiple distributed | Scalability, fault | Complexity,
Scheduling schedulers tolerance communication overhead
Agent-based Load | Distributed Adaptability, Complex coordination,
Balancing coordinating agents | flexibility global optimization

Commodity Market
Model

Models system as
market economy

Economic efficiency

Complex pricing models

on nodes attribute
values

control, variability of
nodes attributes

Auction-based Users bid  for | Demand-based Susceptible to malicious

Model resources pricing bidding

ACO Ant colony | Adaptive allocation, | Algorithm complexity
optimization agents | scalability

PSO Cooperative search | Ease of | Convergence to  local
for optimal | implementation optima
allocation

Al-powered Al-powered  task | Adaptability to | Single point of failure

optimisation distribution  based | system changes,

2.2. Description of traditional task distribution algorithms.

Centralized methods involve a single coordinator for allocation. Central scheduling allows
simplicity in task sequencing and full control over scheduling policies. However, having a single
point of failure reduces fault tolerance[7]. Centralized load balancing simplifies workload distribution
implementation but cannot scale efficiently due to the central coordinator bottleneck]8].

Decentralized distributed scheduling provides inherent scalability and redundancy against
failures by using multiple schedulers[9]. But extensive communication and coordination between
schedulers introduces significant complexity and overhead[10]. Agent-based load balancing is highly
flexible and adaptive through autonomous, decentralized agents. However, optimizing global
workload distribution through local agent interactions involves extremely complex system modeling

and design[11, 12].

Market-based models offer efficient demand-driven resource pricing and allocation[13].
However, accurately modeling user valuations and bidding behaviors as well as mechanisms for price
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setting and winner selection is non-trivial[14]. Preventing malicious actors who artificially influence
prices or auction outcomes is an additional challenge[15].

Swarm intelligence methods like ant colony optimization provide decentralized coordination
giving robustness and scalability. But modeling agent interactions requires intricate probabilistic
algorithms which are difficult to optimize[16]. Particle swarm optimization simplifies
implementation through decentralized cooperative search. But particles may converge prematurely at
locally optimal resource configurations and fail to find global optima[17,18].

3. Description of proposed ai-based solution.

The proposed Al-based optimization method employs a neural network for flexible task
distribution across heterogeneous system architectures. The neural network is responsible for
assigning tasks to nodes based on various attribute parameters of both the nodes and tasks.

Each node provides a set of attributes representing its current state, including metrics like
computational efficiency, security level, fault tolerance, and data transfer latency. These node
attribute values are collected through continuous monitoring and fed into a dataset used to train the
neural network. This allows the neural network to learn the capabilities and current conditions of all
nodes in the system

When a new task arrives, the trained neural network can then match the task to the most suitable
node by comparing the task requirements to the node attributes it has learned (Fig. 2). Deep learning
techniques enable the neural network to continuously update its knowledge through new attribute

data from the monitoring system.

Al Scheduler

Fig. 2. Schema of Al-based scheduling approach

This approach provides an adaptive framework for optimally assigning heterogeneous tasks
across diverse nodes in distributed environments.
Potential Advantages:
e Adaptability to heterogeneous and changing system conditions through continuous neural
network training
e Flexible task-node mapping based on learned node capabilities and current states
e Scalable to large systems by leveraging deep learning techniques
e Optimized resource utilization by fitting tasks to best suited nodes
Potential Disadvantages:
e Complex neural network design and training process
e Requires high quality and consistent node monitoring data
e Computationally intensive training for large neural networks
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e Challenging to define optimal node attribute parameters and data features

4. Evaluating neural networks architecture while conducting practical experiments.

In order to thoroughly evaluate neural networks for optimized node selection, we conducted
extensive comparative experiments with feedforward neural networks (FFNN) and convolutional
neural networks (CNN). Five datasets were created containing 100, 500, 1000, 1500, and 2000 rows
representing potential nodes, each with attributes for performance, security, baud rate, reliability, and
a binary result value. The FFNN and CNN architectures were trained on 80% of each dataset and
validated on the remaining 20% to predict node suitability.

A comparison of architectures of developed feedforward and convolutional neural networks is
presented in Figure 3 and Figure 4.

ovrmrey
LAYER
(SOFTMAX)

HIDDEN LAYER | HIDDEN LAYER 2 HIDDEN LAYER )
(RELL) (RELL) (RELL)

Fig. 3. Model of developed FFNN neural network
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Input Output

Layer Layer
ConviD . Dense Dense
(ReLU) MaxPooling1D Flatten (ReLU) (Softmax)

Fig. 4. Model of developed CCNN

Five datasets were created containing 100, 500, 1000, 1500, and 2000 rows representing
potential nodes, each with attributes for performance, security, baud rate, reliability, and a binary
result value. The FFNN and CNN architectures were trained on 80% of each dataset and validated on
the remaining 20% to predict node suitability.

Comparison of FFNN and CCNN experiment results

== FFMM == COMM

80,00
500 1000 1500 2000

Dataset Size
Fig. 5. Diagram of accuracy comparison for FFNN and CCNN architectures

The FFNN demonstrated superior overall accuracy and consistency across all dataset sizes
(Fig. 5). Specifically, the FFNN achieved 90%, 97%, 98.5%, 98.6%, and 98.5% validation accuracy
on the 100, 500, 1000, 1500, and 2000 row datasets respectively. Meanwhile, the CNN had varying
performance of 95%, 98%, 95%, 98%, and 95% accuracy on the same datasets. The FFNN's fully
connected layers appear better suited for learning the complex relationships between node attributes
and suitability for this classification task.

Based on the experimental results, it was found that for our dataset, it is not possible to
definitively determine a more effective neural network architecture. This is because both the
feedforward neural network (FFNN) and the convolutional neural network (CNN) architectures
exhibited the best and worst performance across different dataset sizes.
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Consequently, in the general case, there is no clear-cut choice of a specific neural network
architecture to address the given task. There is a need to develop a modified neural network
architecture that can provide more effective results for arbitrary dataset dimensions.

The experiments revealed that the performance of the two architectures varied significantly
across different dataset sizes. While the FFNN demonstrated superior overall accuracy and
consistency, the CNN exhibited fluctuating performance, sometimes outperforming the FFNN and
sometimes lagging. This inconsistency highlights the challenge in selecting a single architecture that
can perform optimally across diverse dataset scales.

Therefore, further research efforts should focus on designing a hybrid or adaptive neural
network architecture that can dynamically adjust its structure and parameters based on the
characteristics of the input data. Such an approach could leverage the strengths of both feedforward
and convolutional networks, allowing for efficient resource allocation tailored to the specific dataset
at hand.
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