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COMPUTER VISION-BASED APPROACH FOR MARKERLESS UAV LANDING ZONE
IDENTIFICATION

Abstract: This article presents a computer vision-based approach for autonomous detection of safe landing zones
for unmanned aerial vehicles (UAVs) using only images from an onboard camera. YOLOvS5s was chosen as the base
model, providing a good balance in speed and accuracy of detection with low computational complexity, allowing
deployment in the resource-limited environments. The model was trained on a database of an urban environment
containing four classes: “landing impossible”, “landing possible”, “person”, and “tree”. To increase the robustness,
two data augmentation strategies were proposed that extend the input image processing pipeline at the model level. The
first one utilizes the CLAHE, ToGray, or Equalize image augmentations, and another uses RandomBrightnessContrast,
RandomShadow, or GaussNoise.

To check the adaptability of the proposed models to real-world variations, the evaluation session was conducted
with different confidence thresholds: 25%, 50% and 75%. The results show that the modified models demonstrate a
moderate improvement in key metrics. To further optimize results, an additional fine-tuning round was conducted using
optimized hyperparameters and the weights from the initial stage. The results of evaluation highlight the efficiency of the
proposed approaches.

Finally, based on the research results, the best model was selected for further use. Directions for future research
are outlined, focusing on creating autonomous last-mile delivery systems using UAVs to increase the reliability and
efficiency of delivery.

Keywords: object detection, image processing, unmanned aerial vehicles, UAV, autonomous landing, landing zone
detection, autonomous delivery.
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NIAXI1A HA OCHOBI KOMII'KOTEPHOI'O 30PY JJIAA BUSBJIEHHA 30HU ITIOCAIKU
BIIJIA BE3 3ACTOCYBAHHS MAPKEPIB

Anomauia: Memorw OocniodceHHss € po3pobKa mooeni KOMN IOMEPHO20 30py Olsl A8MOHOMHO20 GUABNIEHHS
be3neunoi 30HU nocadku besninomuux aimanvhux anapamie (BIL/IA) 3a 306pascennamu 3i 86ydoearoi kamepu 6e3
BUKOPUCMAHHA CHeyialbHUx mapkepie abo dodamkosux cucmem, makux ax GPS. B axocmi 6a3060i moodeni obpano
YOLOv5s sk cyyachuil nioxio 00 KoMn IOMEPHO20 30Dy, WO NOEOHYE 2aApHY WBUOKICHb Ma MOYHiCMb OemeKyii 3
He8eUKOr 00HUCTIOBANILHOI CKAAOHICMI0. Lle 003601€ SUKOPUCIO8Y8amU MOOeTb HA PIHUX KIHYeBUX NpUcmposx,
Hagimv 6 ymoeax obmedceHux pecypcie. bazosy moders 6yn0 HagueHO Ha HAOOPI MPEHYBATLHUX OAHUX MICbKO20
cepedosuwa, akutl micmums yomupu kiacu. “landing impossible”, “landing possible”, “person”, i “tree”.

Jna nidsuwenus cmilikocmi 00 @apiayitl peanbHO20 cepedosuUd 3anpPONOHOBAHO 08I MoOugixayii, aKi
PO3WUPIOIOMY NAUNAAUH 00pOOKU BXIOHUX 300padiceHb HA PIBHI MOOe, 30LIbuyouy 8apiamueHicms 0aHux nio yac
mpenysanns. Ilepwa cmpamezia 3acmocogye 00Hy 3 mpbox Moouixkayit i3 3azanrbroio umosipricmio 60%: CLAHE,
ToGray abo Equalize. [pyea cmpameeia 3acmocogye OOHY 3 HACMYNHUX MOOUQIKayiti  300padceHHs:
RandomBrightnessContrast, RandomShadow abo GaussNoise. [Iposederno payHo mpeHy8anHs mooerel ma ompumano
KAI0408] NOKAZHUKU, AKI CIAIU OCHOBOI0 0Nl HOOWILULO20 NOPIBHAHHSL.
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Hacmynnum emanom nepesipeno adanmusHicms OmpuManux mooeneli 00 peaibHux ymos, d came nposedeHo
anpobayiio Ha MmecmosoMy HAOOPI MPEHYBANLHUX OAHUX, WO MICIMUMb MPAHCHOPMOBaHT 300padicerts. [ nopieHsHHS
0a30601 ma Mooughikosanux mooesell NPOseOeHO Mpu emani Mechy8anHs 3 PisHUMU nopoeamu eneenenocmi. 25%, 50%
ma 75%. Ompumani pe3yiomamu HA8eOEHO Y GiON0GIOHUX mabnuysax. 3a pesyromamamu anpodayii Moougikosani
MOOeili 0eMOHCIPYIomb cmadilibHe NOMIPHe NOKPAWEHHSL KIFOU08UX MEMPUK.

s nodanvwioi onmumizayii ma niosuwjenHss 30amHOCMi Moodeneli 00 Y3d2aNbHEeHHS ma NOKpUummsi
HeCmaHOapmuux cumyayitl, npoeedeHo payHo OOHAGUAHHS 3 BUKOPUCMAHHAM ONMUMI308AHUX 2INepnapamempis Ha
OCHO8I 6aco6ux Koegiyicnmax 3 nepuwtoco emany. Pezyremamu npoananizogano ma Ha8eOeHO BUCHOBKU WOOO
eqhexmueHoCcmi 3anponoHOBAHUX PiuleHb.

V' 3asepwenni cgopmynrvosano 6ucHoéku w000 OOYINLHOCMI 3ACMOCYBAHHS 3ANPONOHOBAHUX NIOX00is,
00TpYHMOBAHO BUOIP HAUKPaAWOl MOOeL 3a pe3yIbmamamu 00CIIONCEHHs Ol no0anbulo2o sukopucmants. OKpecieHo
HANpSIMKU MatloymHix 0ociiodiceib, CNpsIMOBAHUX HA CMBOPEHHS CUCMEM A8MOHOMHOI 00CMABKU OCMAHHbLOI MU 3
suxopucmarnusim BIIJIA ons niosuwenns Haditinocmi i eghpeKmugHoCmi npoyecy 00CmasKu.

Knrouosi cnosa: sussnenns 06'ekmis, 00podka 300paxcenv, besninomui nimanvhi anapamu, bBII/IA, asmonomna
nocaoxa, 8UsAGNEHHs 30HU NOCAOKU, ABMOHOMHA OOCTHABKA.

1. Introduction

Unmanned aerial vehicles (UAVs) have evolved from expensive experimental proof-of-concept
prototypes to modern devices widely used in everyday life. This is especially noticeable in the field of content
creation, where drones offer new perspectives and opportunities for capturing materials. However, it is only a
matter of time before this technology scales up and becomes a noticeable player in other areas, and logistics
represents a field with especially high potential for UAV integration.

In the modern world, logistics is becoming increasingly complex due to the constant growth in the order
volumes that require fast and reliable delivery. Integrating UAVs into the last-mile delivery allows the freeing
up of human resources for more complex tasks that cannot be automated and require manual intervention, as
well as improve the level of service for end users by reducing the time and cost associated with delivering
small packages. An autonomous UAV delivery system can be considered as a combination of the following
modules:

— Navigation module — responsible for planning the flight route and controls the movement of the

UAV;

— Delivery endpoint determination module — helps identify the delivery location (evaluates whether it

is the expected location, whether it is safe, and whether delivery is possible);

— Cargo control module — ensures the secure fixation and release of the cargo using the appropriate

mechanism.

This work focuses on the delivery endpoint determination module — an important element that solves
the task of selecting the endpoint in the delivery chain. Currently, there are no systems capable of determining
a safe landing zone in real time within a typical urban environment for various scenarios (including private
households and open public spaces such as parks and squares) without additional external dependencies (such
as GPS or special markers).

2. Purpose of the study

The purpose of this study is to identify suitable landing zones for UAVs without relying on specialized
markers. To achieve this, a computer vision-based model was developed to detect safe landing sites in open
areas of public or private spaces that offer sufficient free space, using images from onboard cameras. Instead
of using artificial markers, the model was trained to recognize natural surface features — such as smooth areas
and the absence of obstacles. This approach improves the model’s generalization and removes the need for
artificial markers, making it more robust and applicable in real-world deployment.

3. Related work

A review of recent studies show that UAV-based autonomous delivery systems are advancing quickly,
yet many persistent challenges remain. In earlier work [1], we introduced a computer vision model built on
YOLOVSs, designed to identify safe landing zones for drones by analyzing images captured from onboard
cameras. While this method proved effective in detecting landing zones marked with specialized visual
markers under varying image distortions, its effectiveness is limited by the necessity of these markers being
present. As a result, property owners are required to place markers in advance, and if no markers are available,
like in a yard or a field that hasn’t been prepared, the drone won’t be able to find a safe place to land.
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As another example, Ge et al. [2] propose a vision-based landing strategy for UA Vs that enables docking
on a custom multi-level platform under adverse wind conditions by detecting special markers — AprilTags.
However, the solution is highly dependent on artificial markers and a specially designed landing surface, which
limits its applicability in unprepared or natural environments. In addition, the article does not address important
aspects of the model’s generalization ability, such as its performance under varying lighting conditions and
image distortions.

Commercial services have also tried to solve the problem of safe, flexible UAV delivery. Amazon Prime
Drone Delivery [3] is a well-known example and has made real progress in automating parcel delivery.
However, the user still has to pick a landing spot by pointing it out on a satellite photo of their property, so
everything depends on how accurate the GPS is — and it means an extra step for the customer. Additionally,
the UAV does not land, but drops the package from a height of 3.5 m, limiting the type of cargo, making the
system less suitable for fragile or sensitive items, and reducing the versatility of the solution.

Flytrex [4], which currently operates in a few areas of Texas and North Carolina, offers another
commercial solution. Customers can choose a preferred drop-off location (such as a backyard or workplace)
using a mobile application. However, every new delivery point must first be approved in person by a company
representative, who evaluates whether there is enough open space and checks for possible hazards such as
overhead power lines or any other obstacles. In addition, the system is coupled to GPS coordinates and delivers
packages using a zip-line mechanism from a height of 24-25 m, which complicates integration in dense urban
environments and, similar to Amazon example, limits the types of cargo that can be safely delivered.

Taken together, well-known methods that depend on predefined landing markers or accurate GPS
navigation encounter significant challenges — particularly in dynamic or GPS-denied environments. This
highlights the potential of computer vision techniques to address the problem of safe landing zone detection
by analyzing natural environmental “markers” such as surface flatness, absence of obstacles, and the
availability of sufficient open space. By eliminating the dependency on artificial markers, these solutions offer
the potential to boost the adaptability and effectiveness of future UAV delivery systems.

4. Results and discussion

In this study, YOLOvSs [5] was selected as the base model due to its well-established reputation as a
state-of-the-art real-time object detection and image segmentation framework that offers high detection speed
and accuracy, making it well-suited for resource-constrained environments. The training process utilized a
dataset of urban environments sourced from the Roboflow platform [6]. The dataset does not contain any
specialized landing markers. Instead, the focus of this research is on identifying safe landing zones within
random urban environments using natural scene markers. The dataset includes four classes: “landing
impossible”, “landing possible”, “person”, and “tree”. In total, there are 5773 labeled instances — 1479 labeled
as “landing impossible”, 2090 as “landing possible”, 702 as “person”, and 1502 as “tree”. Utilizing this dataset,
the model learns to recognize safe and dangerous landing zones and environmental obstacles.

During the first training round, standard hyperparameters were used to collect baseline metrics across
all classes: Precision = 0.796, Recall = 0.7, mAP@0.5 = 0.726, and mAP@0.5:0.95 = 0.523. These results
confirm the effectiveness of the baseline configuration when applied to urban images, demonstrating high
initial detection capability under controlled conditions.

To improve the model’s resilience to variations of the real-world environments, two alternative data
augmentation pipelines were developed using the Albumentations library [7]. The first, named as
Augmentation-A (used in the modified]l model), focuses on enhancing contrast and color representation to
increase the model’s tolerance to differences in image quality. During training, one of three augmentations is
randomly applied to each image with a 60% probability: CLAHE (Contrast Limited Adaptive Histogram
Equalization), which enhances local contrast; ToGray, which converts the image to grayscale; and Equalize,
which adjusts image brightness and contrast via histogram equalization. Training with this augmentation
pipeline produced the following results across all classes: Precision = 0.763, Recall = 0.711, mAP@0.5 =
0.721, and mAP@0.5:0.95 = 0.52.

The second strategy, named as Augmentation-B (used in the modified2 model), extends the
augmentation pipeline with additional transformations aimed to simulate a wider range of real-world
environmental conditions:

— RandomBrightnessContrast adjusts the image brightness and contrast within +20% range with a

50% probability, improving the model’s robustness to variable lighting;

— RandomShadow, applied with a probability of 30%, simulates shadows helping the model

generalize better to environments with irregular illumination;
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— GaussNoise adds Gaussian noise with a variance between 10 and 50 at a 30% probability, enhancing

model’s tolerance to sensor noise.

Using the Augmentation-B strategy, the model achieved the following results across all classes:
Precision = 0.778, Recall = 0.709, mAP@0.5 = 0.728, and mAP@0.5:0.95 = 0.523. These results indicate a
modest but consistent improvement, particularly in mAP score, indicating enhanced resilience to complex and
variable visual conditions.

Table 1 presents the key metrics — both overall (across all classes) and for each individual class —
obtained after training the baseline model and the models with extended augmentation pipelines (labeled as
modified] and modified2). A comparison of these two augmentation strategies demonstrates that integrating a
wider variety of realistic transformations in the data pipeline can incrementally boost the model’s overall
detection quality and generalization ability, with the Augmentation-B strategy achieving the highest overall
metrics as a result of the training session.

Table 1
Model performance after training

Model Class name Precision Recall mAP@0,5 mAP@0,5:0,95
default all 0.796 0.7 0.726 0.523
landing impossible 0.799 0.726 0.768 0.57
landing possible 0.698 0.52 0.541 0.35
person 0.935 0.905 0.893 0.655
tree 0.751 0.648 0.702 0.517
modifiedl all 0.763 0.711 0.721 0.52
landing impossible 0.747 0.737 0.754 0.562
landing possible 0.65 0.528 0.535 0.352
person 0.929 0.912 0.897 0.656
tree 0.727 0.665 0.697 0.508
modified2 all 0.778 0.709 0.728 0.523
landing impossible 0.737 0.726 0.753 0.563
landing possible 0.682 0.521 0.54 0.357
person 0.924 0.912 0.903 0.654
tree 0.768 0.678 0.717 0.518

To evaluate the adaptability of both the baseline and modified models to real-world conditions, validation was
conducted using a specially constructed test dataset [8], which contains a total of 1048 class instances. The test
set includes: standard images (a), images with brightness adjustments of £50% (b, c¢), Gaussian-blurred images
(d), images with added noise (e), grayscale images (f), and images rotated by +45° (g). Figure 1 shows a sample
test image along with its corresponding augmented variants.

Fig. 1 BRERARE 3" P ] ;

Example of the test set with corresponding image augmentations.
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Given that the primary goal of this work is to identify the optimal landing point by maximizing the
probability of safe zone detection, the predicted region with the highest confidence score is selected as the
final landing candidate for each test image. To compare the baseline and modified models, three phases of
evaluation were performed — using confidence thresholds of 25%, 50%, and 75%.

Table 2
The results of the evaluation for the baseline (default) and modified (modified) models at a minimum
confidence threshold of 25%

Model Class name TP FP FN F, P R mAP@0,5 mAP@0,5:0,95
default all 571 | 267 | 477 | 0.605 | 0.681 | 0544 | 0.62 0.461
_ landing 149 | 86 | 131 | 0.579 | 0.634 | 0.532 0.623 0.478
impossible
landing 148 | 126 | 229 | 0454 | 054 | 0392 | 044 0.327
possible
person 103 | 7 | 38 | 08220939 073 | 03854 0.641
tree 131 | 82 | 119 | 0.565 | 0.614 | 0.523 | 0.563 0.396
modified] all 620 | 255 | 428 | 0.645 | 0.709 | 0.591 | 0.655 0.489
_ landing 174 | 89 | 106 | 0.641 | 0.661 | 0.621 |  0.675 0.508
impossible
landing 162 | 121 | 215 | 0491 | 0573 | 043 | 0483 0.36
possible
person 110 | 2 | 31 | 087 | 0983 | 078 | 0.888 0.652
iree 134 | 83 | 116 | 0572 | 0.617 | 0534 | 0572 0.437
modified2 all 654 | 260 | 394 | 0.667 | 0.715 | 0.624 | 0.68 0.509
 landing 185 | 96 | 95 | 0.659 | 0.658 | 0.661 0.71 0.56
impossible
landing 181 | 105 | 196 | 0.546 | 0.632 | 048 | 0516 0.378
possible
person 110 | 7 | 31 | 0853 | 0941 | 078 | 0883 0.647
iree 144 | 84 | 106 | 0.601 | 0.631 | 0574 | _0.612 0.451
Table 3

The results of the evaluation for the baseline (default) and modified (modified) models at a minimum

confidence threshold of 50%

Model Class name TP FP FN F; P R mAP@0,5 mAP@0,5:0,95

default all 450 | 142 | 598 | 0.549 [ 0.761 | 0.43 0.603 0.466
 landing 126 | 40 | 154 | 0.565 | 0.758 | 0.45 0.635 0.495

impossible
landing 101 | 49 | 276 | 0.383 | 0.671 | 0.268 0.452 0.363

possible
person 99 2 42 [ 0.818 | 0.981 | 0.702 0.846 0.643
tree 75 | 44 | 175 | 0407 | 0.632 | 0.3 0.477 0.365
modified] all 494 | 135 | 554 | 0.589 | 0.786 | 0.472 0.632 0.494
_ landing 143 | 42 | 137 | 0.615 | 0.771 | 0.511 0.666 0.514

impossible
landing 105 | 49 | 272 | 0.394 | 0.679 | 0.278 0.464 0.382

possible
person 107 | 0 34 (0863 1 | 0.759 0.879 0.656
tree 85 | 38 | 165 | 0.455 | 0.692 | 0.339 0.518 0.424
modified2 all 503 | 135 | 545 | 0.596 | 0.788 | 0.48 0.642 0.501
 landing 151 | 38 | 129 | 0.643 | 0.797 | 0.539 0.696 0.562

impossible
landing 85 | 45 | 292 | 0335 | 0.654 | 0.225 0.424 0.346

possible
person 110 | 3 31 | 0.866 | 0.974 | 0.78 0.887 0.651
tree 94 | 35 | 156 | 0.494 | 0.727 | 0.374 0.563 0.446

For each phase, the following performance metrics were calculated:
— True Positives (TP): The number of correctly detected class instances;
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— False Positives (FP): The sum of duplicate detections for a single class instance and incorrect
predictions;
— False Negatives (FN): The number of class instances that were not detected.
Precision (1), Recall (2), and F; score (3), the harmonic mean of precision and recall, were calculated
using standard formulas [9]:

Precision = — (1)
TT{’P+FP
Recall = ()
Precisizfltﬂ?vecall
Fj=2——F—— 3)

) ) _ Precision+Recall .
The evaluation results are summarized in Tables 2-4. For each model, results are provided across all

classes as well as individually for each object class. Each block of results corresponds to a different minimum
confidence threshold applied during detection: 25%, 50%, and 75%.
Table 4
The results of the evaluation for the baseline (default) and modified (modified) models at a minimum
confidence threshold of 75%

Model Class name TP FP FN F, P R mAP@0,5 mAP@0,5:0,95

default all 338 | 70 | 710 | 0.465 | 0.829 | 0.323 0.579 0.467
_ landing 98 11 | 182 | 0.504 | 0.899 | 0.35 0.632 0.517

impossible
landing 36 | 18 | 341 | 0.167 | 0.669 | 0.096 | 0375 0.32

possible
person 94 0 47 | 08 1 | 0.666 0.833 0.638
tree 45 | 15 [ 205 [ 029 | 075 | 0.18 0.478 0.395
modified] all 373 | 80 | 675 | 0.497 | 0.823 | 0.356 0.593 0.486
anding 3l yg 167 | 0561 | 0922 | 0404 | 0.665 0.542

impossible
landing 39 | 21 | 338 | 0.179 | 0.652 | 0.103 0.374 0.343

possible
person 104 | 0 37 (0849 | 1 [ 0.737 0.869 0.651
tree 45 | 18 | 205 [ 0.287 | 0.718 | 0.18 0.465 0.41
modified2 all 372 | 58 | 676 | 0.503 | 0.865 | 0.355 0.612 0.504
 landing 109 | 9 171 | 0.548 | 0.928 | 0.389 0.663 0.57

impossible
landing 37 | 18 | 340 | 0.171 | 0.668 | 0.098 0.376 0.351

possible
person 100 | 1 41 [ 0.827 | 0.99 | 0.709 0.853 0.63
tree 56 8 | 194 | 0355 | 0.873 | 0.223 0.554 0.466

Examination of results at different confidence thresholds highlights a consistent performance trend

between the baseline and modified models:

— At a confidence threshold of 25%, both modified models show a noticeable improvement in the
number of correctly detected instances (TP) compared to the baseline. For example, the overall TP
for the baseline model is 571, while modified]l and modified2 achieve 620 and 654, respectively.
This increase is reflected mostly by all classes, with the most noticeable difference in “landing
impossible” and “landing possible” classes. Notably, modified1 outperforms the baseline by 8.6%
in overall TP, and modified2 achieves a further 5.5% increase over modifiedl. Both augmented
models also show higher key metrics (Precision, Recall, and mAP) scores compared to the baseline,
indicating a better ability to generalize input data in the unpredictable conditions;

— At a confidence threshold of 50%, the advantages of the modified models become even more
obvious as the threshold rises — modified1 achieves 494 overall TPs, while modified2 reaches 503,
compared to 450 for the baseline. Although a slight decrease in recall is observed for certain classes,
both modified models achieve higher overall key metrics. These results prove that the proposed
augmentation strategies enhance the robustness of the models;

— At a confidence threshold of 75%, the number of detections naturally decreases due to the stricter
confidence requirements. Nevertheless, both modified models continue to outperform the baseline
model: modified] records 373 overall TPs, while modified2 achieves 372, compared to only 338

10
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for the baseline. In almost all cases, both modified models also maintain higher values across key
metrics;

— This stable improvement in performance across different confidence thresholds is crucial for real-

world applications where it is important to minimize the number of false positives.

In summary, both modified models demonstrate significant improvements over the baseline model at all
tested confidence thresholds. While modified2 frequently achieves the best overall results, modified1 remains
close and, in some cases, even outperforms modified2 in metrics such as Recall or F; score. These results
highlight the importance of the proposed data augmentation strategies for improving the reliability and
efficiency of UAV landing zone detection models, especially in varied and challenging environments.

To further enhance the models’ generalization capabilities and performance in atypical scenarios, an
additional round of fine-tuning [10] was conducted. This fine-tuning phase used optimized hyperparameters
and was performed with the weights obtained from the initial training stage. The results of this process are
presented in Table 5, where four configurations were evaluated:

— default*: the baseline model, fine-tuned from the initial weights without changing the

hyperparameters (serving as a control version);

— ft-default: the baseline model, fine-tuned from the initial weights with newly selected, optimized

hyperparameters;

— ft-modified] and ft-modified2: the modified models with extended augmentation, fine-tuned from

the initial weights using the optimized hyperparameters.

Table 5
Model performance after fine-tunin
Model Class name Precision Recall mAP@0.5 mAP@0.5:0.95

default* all 0.788 0.698 0.719 0.519
landing impossible 0.794 0.73 0.767 0.57
landing possible 0.68 0.501 0.524 0.345

person 0.951 0.905 0.902 0.661

tree 0.726 0.655 0.683 0.501
ft-default all 0.802 0.715 0.73 0.524
landing impossible 0.811 0.722 0.754 0.565
landing possible 0.71 0.541 0.573 0.382
person 0.956 0.905 0.889 0.628

tree 0.729 0.69 0.706 0.52
ft-modified1 all 0.79 0.726 0.731 0.515
landing impossible 0.772 0.751 0.759 0.557
landing possible 0.697 0.561 0.555 0.368
person 0.953 0.891 0.884 0.607
tree 0.74 0.701 0.727 0.529
ft-modified2 all 0.794 0.722 0.737 0.525
landing impossible 0.763 0.74 0.747 0.564
landing possible 0.685 0.535 0.567 0.384

person 0.94 0.883 0.895 0.61

tree 0.755 0.732 0.738 0.54

Compared to the baseline model, both ft-modifiedl and ft-modified2 demonstrate noticeable
improvements after fine-tuning. Specifically, ft-modifiedl increased recall by 3.7%, while ft-modified2
improved recall by 3.1%. For mAP@0.5, ft-modified]1 improved by 0.7%, and ft-modified2 by 1.5%. In terms
of mAP@0.5:0.95, ft-modified2 achieved a 0.4% improvement, while ft-modified] remained close to the
baseline. Precision for both models remained nearly unchanged or showed a slight decrease, indicating that
the primary benefits of proposed enhancements were in recall and average detection ability.

The obtained results indicate that the modified models, especially after fine-tuning, outperformed the
baseline in most metrics, showing better generalization and reliability in challenging cases, confirming that the
combination of advanced augmentation and hyperparameter optimization leads to more robust UAV landing
zone detection across different scenarios. The fine-tuned models were also evaluated at various confidence
thresholds using the test dataset, with results presented in Tables 6-8.

11
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Table 6
The results of the evaluation for the fine-tuned models at a minimum confidence threshold of 25%
Model Class name TP FP FN F, P R mAP@0,5 mAP@0,5:0,95
default* all 549 | 220 | 499 | 0.604 | 0.714 | 0.524 0.619 0.447
 landing 139 | 65 | 141 | 0.574 | 0.682 | 0.496 0.593 0.435
impossible
landing 146 | 102 | 231 | 0.467 | 0.588 | 0.387 0.442 0316
possible
person 105 | 10 36 | 0.819 | 0.911 | 0.745 0.854 0.626
tree 117 | 57 | 133 | 0553 | 0.673 | 0.469 0.587 0.412
ft-default all 572 | 243 | 476 | 0.614 | 0.702 | 0.546 0.627 0.461
 landing 1490 | 81 | 140 | 0559 | 0632 | 05 0.599 0.451
impossible
landing 142 | 106 | 235 | 0455 | 0574 | 0377 0.46 0.354
possible
person 104 6 37 | 083 | 0949 | 0.737 0.859 0.624
tree 142 | 75 | 108 | 0.608 | 0.653 | 0.568 0.588 0.415
ft- all 613 | 247 | 435 | 0.643 | 0.713 | 0.585 0.654 0.471
modifiedl | landing 159 | 86 | 121 | 0.605 | 0.649 | 0.567 0.646 0.473
impossible
landing 168 | 106 | 209 | 0517 | 0.613 | 0.447 0.5 0377
possible
person 105 7 36 | 0.83 | 0.939 | 0.745 0.859 0.596
tree 146 | 78 | 104 | 0.615 | 0.651 | 0.583 0.611 0.437
ft- all 645 | 224 | 403 | 0.673 | 0.742 | 0.616 0.692 0.521
modified2 | landing 171 | 68 | 109 | 0.659 | 0.715 | 0.611 |  0.706 0.548
impossible
landing 174 | 96 | 203 | 0.538 | 0.644 | 0.462 0.531 0.401
possible
person 109 7 32 | 085 | 0943 | 0.773 0.878 0.63
tree 154 | 77 96 | 0.64 | 0.666 | 0.617 0.654 0.505
Table 7
The results of the evaluation for the fine-tuned models at a minimum confidence threshold of 50%
Model Class name TP FP FN F; P R mAP@0,5 | mAP@0,5:0,95
default* all 465 | 125 | 583 | 0.568 | 0.788 | 0.444 0.613 0.457
landing impossible 120 42 160 | 0.544 | 0.743 | 0.429 0.598 0.446
landing possible 114 55 263 | 0.417 | 0.675 | 0.302 0.458 0.349
person 100 3 41 | 0.821 | 0.974 | 0.709 0.847 0.627
tree 84 26 | 166 | 0465 | 0.76 | 0.335 0.549 0.407
ft-default all 471 | 133 | 577 | 0571 | 0.78 | 0.45 0.617 0.471
landing impossible 123 45 157 | 0.549 | 0.732 | 0.439 0.608 0.469
landing possible 115 | 56 | 262 ] 0419 ] 0.673 | 0.305 0.472 0.38
person 98 1 43 | 0.816 | 0.99 | 0.695 0.844 0.625
tree 90 34 | 160 | 048 | 0.725 | 0.359 0.543 0.408
ft- all 541 | 154 | 507 | 0.621 | 0.778 | 0.517 0.648 0.48
modifiedl | landing impossible 140 56 140 | 0.588 | 0.714 0.5 0.635 0.483
landing possible 138 | 64 | 239 ] 0476 | 0.682 | 0.366 0.508 0.399
person 103 3 38 | 0.834 | 0973 | 0.73 0.858 0.597
tree 118 | 41 | 1320576 | 0743 | 0.47 0.591 0.443
ft- all 556 | 120 | 492 | 0.645 | 0.823 | 0.531 0.679 0.526
modified2 | landing impossible 150 34 130 | 0.647 | 0.817 | 0.536 0.7 0.556
landing possible 129 | 47 [ 248 ] 0466 | 0.732 | 0.342 0.515 0.412
person 107 3 34 | 0.853 | 0.973 | 0.759 0.875 0.634
tree 122 | 37 | 1280595 0.768 | 0.486 0.629 0.502
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Table 8
The results of the evaluation for the fine-tuned models at a minimum confidence threshold of 75%
Model Class name TP FP FN F, P R mAP@0,5 mAP@0,5:0,95
default* all 331 | 91 | 717 [ 045 [ 0.784 | 0316 0.554 0.442
_ landing 90 | 24 | 190 | 0.457 | 0.787 | 0.321 0.57 0.449
impossible
landing 33 | 31 | 344 | 0.15 | 0.519 | 0.087 0.298 0.262
possible
person 97 1 44 [ 0811 [ 0.99 | 0.687 0.838 0.623
tree 42 8 | 208 | 0.279 | 0.838 [ 0.167 0.51 0.433
fi-default all 327 | 73 | 721 [ 0451 [ 0.818 | 0312 0.567 0.461
_ landing 99 | 17 | 181 | 05 | 0851|0354 | 0607 0.478
impossible
landing 50 | 29 | 327 | 0219 | 0.63 | 0.132 0.378 0.338
possible
person 81 0 60 [ 0729 1 0573 0.787 0.609
tree 47 | 13 [ 203 [ 0303 | 0.789 | 0.188 0.496 0.418
fi- all 374 | 91 | 674 | 0.495 | 0.805 | 0.357 0.584 0.452
modifiedl | landing | o0 1166 | 0,551 | 0.851 | 0.407 | 0.638 0.496
impossible
landing 60 | 27 | 317 | 0258 | 0.688 | 0.159 | 0.413 0.35
possible
person 91 0 50 [ 0784 1 | 0.645 0.822 0.592
tree 55 | 26 | 195 [ 0332 ] 0.681 | 0.219 0.462 0.37
fi- all 369 | 83 | 679 | 0.492 | 0.817 | 0.352 0.591 0.484
modified2 | landing | o0 14| 15y | 0,607 | 0.901 | 0457 | 0.689 0.559
impossible
landing 39 | 29 | 338 | 0.175 | 0.571 | 0.103 0.341 0.318
possible
person 88 0 53 [ 0768 | 1 | 0.623 0.812 0.615
tree 56 | 14 | 194 | 0349 [ 0.797 | 0.223 0.521 0.445

Based on the evaluation of the fine-tuned models, the following conclusions can be drawn:

— Improvement in detection quality: both modified models demonstrate significant improvements in
the number of TP and a decrease in FN detections across all test cases. Notably, ft-modified2
achieves up to 23.6% more TP and 17.7% fewer FN detections at the confidence threshold of 50%;

— Improved Recall and F; scores: enhancements in Recall and F; scores are especially notable, with
an increase of up to 23.5% in Recall and 17.5% in F1 score for the ft-modified2 model at the
confidence threshold of 50%, indicating an overall boost in detection efficiency of the proposed
model;

— Higher mAP values: the mean Average Precision (mAP) at both IoU thresholds shows a consistent
improvement for both fine-tuned models. For instance, at the 25% confidence threshold, ft-
modified2 improves mAP@0.5 by almost 9.7% and mAP@0.5:0.95 by 10.4% compared to
baseline; at 50%, the improvements are 12.6% and 12.9%, and at 75%, 5.7% and 3.6%, respectively;

— Balanced Precision: although there are sometimes minor trade-offs in Precision at higher thresholds
(75%), the overall increase in correct detections and mAP scores demonstrates improvements for
real-world use;

— Best overall performer: among all tested configurations, the ft-modified2 model provides the best
results across all metrics and thresholds, making it the recommended model for practical
deployment.

Although the fine-tuned models overall outperform the default versions at lower and moderate
confidence thresholds, their performance is slightly lower at the highest confidence threshold of 75%. This can
be explained by the change in the distribution of confidence scores: fine-tuned models are less likely to assign
very high confidence scores, which makes them more cautious in their predictions. As a result, some correct
detections do not reach the target threshold level and are ignored, resulting in fewer TPs compared to the
default models. In practice, such a cautious approach can help reduce FPs, even if it means missing a few
correct detections at very high confidence levels.
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5. Conclusion

In this work, we propose a vision-based approach for markerless UAV landing zone detection that uses
only images from an onboard camera, without relying on specialized landing markers or GPS signals. The
YOLOVS5s model was adapted and trained to detect both safe and unsafe landing areas, as well as potential
obstacles, using a realistic multiclass dataset. A series of experiments were conducted to evaluate the impact
of advanced data augmentation strategies and hyperparameter optimization. Compared to the baseline, all
proposed modifications — especially those involving data augmentation and hyperparameter tuning — provided
a consistent improvement in detection quality, particularly for the critical class “landing possible”. Although
these improvements are modest, they confirm the practical value of the proposed strategies for reliable UAV
landing zone detection. Key findings include:

— Model-level data augmentation integrating a diverse set of realistic transformations during training
not only increases the number of correctly detected safe landing zones, but also enhances the
model’s overall reliability and robustness — key factors for deployment in dynamic and
unpredictable environments;

— Hyperparameter optimization further enhances model performance compared to standard training;

— The integration of data augmentation and hyperparameter optimization provides the best balance
between key metrics across all tested scenarios. The fine-tuned, augmented model (ft-modified2)
achieved the highest combination of key metrics, including Precision, Recall, and F; score,
outperforming the baseline and control models at most thresholds.

Based on the results, ft-modified2 is recommended as the most effective model for practical UAV
landing zone detection. The proposed approach operates independently of GPS, making it suitable for
environments where satellite navigation is limited or unavailable.

Future research should focus on expanding the current approach or integrating multiple models to enable
the automatic recognition of specially equipped landing pads on multi-story buildings, ensuring coverage of
all urban delivery scenarios. The application of the proposed model, in combination with navigation
algorithms, opens up prospects for the development of fully autonomous, intelligent last-mile delivery systems
using UAVs, which will significantly increase both the efficiency and reliability of aerial cargo delivery
operations.
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